
Testing Software and Hardware
against Speculation Contracts

Boris Köpf

Microsoft Research

NUS CS Research Week

07/01/22

Based on Joint Work With

• Marco Guarnieri (IMDEA Software Institute)

• Jose Morales (IMDEA Software Institute)

• Oleksii Oleksenko (Microsoft Research)

• Jan Reineke (Saarland University)

• Andres Sanchez (EPFL)

• Mark Silberstein (Technion)

• Pepe Vila (Arm)

... and lots of discussions with & feedback from colleagues at Microsoft

Performance is Fundamental

CPUs

Compilers

Virtual machines

Networks

...

minimize

time

space

energy

...

consumption

Performance-enhancing techniques...

• Caching

• Concurrency

• Deduplication

• Compression

• ...

... and their Impact on Security

• Caching

• Concurrency

• Deduplication

• Compression

• ...

Reduce resource

consumption on

average

Exploit variations in

resource

consumption

Example: Cache Side-Channel

Main Memory Cache CPU

b = A[i];

c = A[j];

A[i]A[j]

A[j]

2005: First attacks on AES (Bernstein/Shamir et al.)

2014-…: Highly effective attacks using shared caches (Yarom et al/…)

A[j]

... and their Impact on Security

• Caching

• Concurrency

• Deduplication

• Compression

• Speculative execution

if (x < A_size)

y = A[x]

Example: Speculative Leak

Branch Predictor

Wrong prediction? Roll back changes!

• Logical state

• Microarchitectural state

Spectre V1

void f(int x)
if (x < A_size)

y = B[A[x]] 1) Training

A_size=16... but what

is stored in A[128]?

B[A[128]]]

Spectre V1

void f(int x)
if (x < A_size)

y = B[A[x]] 1) Training

2) Prepare cache

3) Run with x = 128

4) Extract from cache

f(0);f(0);f(1);f(0);f(1);f(2); …

A_size=16... but what

is stored in A[128]?

Covert Channels vs Side-channels

A note on the
Confinement
Problem
1973

20 Years of Covert
Channel Modelling
and Analysis
1999

Timing Attacks
on RSA etc.
1996

Cache-timing
attacks on AES
2005

Flush+Reload
2014

Spectre attacks
2018

• Covert channels: Adversary = Sender & Receiver

• Side-channels: Adversary = Eavesdropper

Countermeasures

• Software-based countermeasures
• Insertion of speculation barriers, speculative load hardening, ...
• Rely on (often implicit) assumptions about underlying hardware

• Hardware-based countermeasures
• InvisiSpec (Micro 18), NDA (Micro 19), STT (Micro 19), SPT (Micro 21),...
• Rely on (often implicit) assumptions about software

Delay loads until they retire

Taint speculatively loaded data;
delay loads to tainted addresses
Taint speculatively loaded data;
delay loads to tainted addresses

...until they cannot be rolled back

Delay loads until they retire

... until they cannot be rolled back

This Talk: Co-design for Secure Speculation

1. Checking software for
contract compliance

2. Hardware-software
contracts for secure
speculation

3. Checking CPUs for contract
compliance

Speculation
Contracts

Speculation Contracts in a Nutshell

• Baseline contract: “constant-time programming”:
• Obligation on software: Make sure secrets don’t affect loads, stores, branch

targets
• (Often implicit) obligation on hardware: Nothing except addresses of loads,

stores, branch targets leaks
• Technically: Make sure that all executions of a program that agree on addresses of loads,

stores, and branch targets also agree on what a muarch attacker can observe

• Note that both obligations are instance of non-interference (NI):
P satisfies NI for all h,h’,l: P(h,l)=P(h’,l)

• Core idea: We generalize from executions and observations to capture
the security properties of a wide range of speculation mechanisms

Examples of Contracts

• CT-Seq:
• Observations: addresses of loads, stores, branch targets

• Executions: sequential in-order

• CT-Spec:
• Observations: addresses of loads, stores, branch targets

• Executions: sequential in-order + “mispredicted” branches up to a bound

• Arch-Seq
• Observations: addresses of loads, stores, branch targets + data that is loaded

• Executions: sequential in-order

• CT-Bpas, CT-Spec-Bpas,…

Leakage of CPU with
branch speculation

Only transiently loaded
data is protected

Leakage of CPU without
speculation

What is a contract?

• A contract is a labelled ISA semantics, where labels correspond to the
information that programs are allowed to leak during execution

• ISA:

• Core rules for CT-SEQ

= trace of observations

Core Rules for CT-Spec

Contracts form a Lattice

means leaks more information than

Checking Programs
for Contract
Compliance

Checking Programs for Contract Compliance

• Contracts pose a verification condition on software:
• Make sure secrets don’t affect contract traces
• What is “secret” is defined by a policy π

• “Constant-time programming”: secret is part of architectural
state

• “Sandboxing”: secret is memory that is not accessed during
in-order execution

Tools for Checking Software

• Spectector

• Specfuzz

• Binsec/Haunted

• Pitchfork

• KleeSpectre

• SpecuSym

• …

[2105.05801] SoK: Practical Foundations for Software Spectre Defenses
(arxiv.org)

https://arxiv.org/abs/2105.05801

Spectector

1. Spectector symbolically executes a program wrt to a contract
semantics to obtain pairs of (Path condition, Observation trace)

2. We query Z3 whether, for all σ, σ’ that satisfy the path condition,
we have

Illustration: Kocher’s Examples

• Ex 1: Vanilla Spectre 1

• Ex 2: Move leak to local function

• Ex 3: Local function that can’t be inlined

• Ex 4: Left-shift y

• Ex 5: Use y as initial value of for loop

• Ex 6: Check bounds with mask rather than <

• Ex 7: Compare against last known-good value

• Ex 8: Use ?: operator

• Ex 9: Use separate value to communicate safety check

• Ex 10: Leak comparison result

• Ex 11: Use memcmp() to read memory for the leak

• Ex 12: Make index sum of two parameters

• Ex 13: Move safety check in inline function

• Ex 14: Invert lower bits of x

• Ex 15: Pass pointer to the length

Spectre Mitigations in Microsoft's C/C++ Compiler

https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html

Example 1
Clang V7.0.0

-O2
Speculative Load Hardening

%rax is -1 whenever y≥size.
We can prove security

Example 10

We detect that A[0xFF..FF]
can leak via control flow

Clang V7.0.0
-O2

Speculative Load Hardening

Example 8

ICC inserts spurious fence

Intel ICC V19.0.0.117
-O2

w/ speculation barriers

Checking CPUs
for Contract
Compliance

Checking CPUs for Contract Compliance

• A CPU satisfies a contract if programs do not leak more information to
a microarchitectural adversary than what the contract specifies
• For all programs, whenever two executions agree on contract traces, they

must also agree on hardware traces

• What is a “CPU”, what are “hardware traces”?
1. “CPU” is an operational semantics with uarch components; hardware traces

are obtained as a projection
• Captures simple out-of-order CPU with 3-stage pipeline
• Operates on registers, main memory, and reorder buffer
• Stubs for caches, branch predictors, scheduler

2. “CPU” is a fabricated chip; hardware traces are given by side-channel attack
(e.g. Prime+Probe on L1D)

Contracts for Mechanisms for Secure
Speculation

- STT protects data that is
only transiently loaded

- STT still permits
speculative leaks

Testing Black-box CPUs against Speculation
Contracts

• Key observation: checking contract compliance can be done in a
black-box fashion
• For all programs, whenever two executions agree on contract traces, they

must also agree on hardware traces

• Challenges:
• How to cope with the intractable search space?

• How to implement “contracts” for a realistic ISA?

• How to obtain deterministic hardware traces?

Revizor (ASPLOS ‘22)

• Test case generator: Creates DAG, adds terminators to blocks,
populates with random instructions (from specified subsets) and
operands (from specified subsets)

• Input generator: Generates random 32 bit numbers for registers,
flags, and memory (1 or 2 pages)

• Model: Unicorn (QEMU-based), instrumented to collect traces +
explore mispredicted branches

• Executor: Prime+Probe (on L1D) and Prime+Probe+assists (clear
page table bit), based on nanoBench

• Priming: Run each test case in a loop with different pseudorandom inputs to
ensure muarch state is primed in a diverse but deterministic fashion

Results

Detected Subtleties

• New variants of V1 & V4

• Speculative stores can modify the cache on Coffee Lake (but likely not
on Skylake)

Detection Speed

• Time-to-violation

Summary

• We propose HW/SW Contracts as a framework for specifying security
of speculative execution.
• Captures unprotected speculation, InvisiSpec, Speculative Taint Tracking, …

• Can be used as a basis for secure programming

• We built Spectector, a tool to detect speculative leaks in software

• We built Revizor, a tool to test CPUs against contracts
• Revizor generates random code snippets to find contract violations

• Automatically surfaces V1, V4, LVI, MDS on x86 (Skylake and Coffee Lake)

• Many avenues for future work, including coverage, white-box
analysis, and more expressive contracts

37

Links

• Hardware-Software Contracts for Secure Speculation - Microsoft
Research (IEEE S&P ‘21)

• Spectector: Principled Detection of Speculative Information Flows -
Microsoft Research (IEEE S&P ‘20)

• Revizor: Testing Black-box CPUs against Speculation Contracts
(arxiv.org) (ASPLOS ‘22)

• Full Time Opportunities: Researcher (Side-channel Attacks and
Defenses) in Cambridge | Research at Microsoft

https://www.microsoft.com/en-us/research/publication/hardware-software-contracts-for-secure-speculation/
https://www.microsoft.com/en-us/research/publication/spectector-principled-detection-of-speculative-information-flows/
https://arxiv.org/abs/2105.06872
https://careers.microsoft.com/us/en/job/1059003/Researcher-Side-channel-Attacks-and-Defenses-

Illustration: Kocher’s Examples

• Ex 1: Vanilla Spectre 1

• Ex 2: Move leak to local function

• Ex 3: Local function that can’t be inlined

• Ex 4: Left-shift y

• Ex 5: Use y as initial value of for loop

• Ex 6: Check bounds with mask rather than <

• Ex 7: Compare against last known-good value

• Ex 8: Use ?: operator

• Ex 9: Use separate value to communicate safety check

• Ex 10: Leak comparison result

• Ex 11: Use memcmp() to read memory for the leak

• Ex 12: Make index sum of two parameters

• Ex 13: Move safety check in inline function

• Ex 14: Invert lower bits of x

• Ex 15: Pass pointer to the length

Example 1
Clang V7.0.0

-O2
Speculative Load Hardening

%rax is -1 whenever y≥size.
We can prove security

Example 10

We detect that A[0xFF..FF]
can leak via control flow

Clang V7.0.0
-O2

Speculative Load Hardening

Example 8

ICC inserts spurious fence

Intel ICC V19.0.0.117
-O2

w/ speculation barriers

Core Idea 2: Checking Security

1. We symbolically execute speculative semantics to obtain pairs of
(Path condition, Observation trace) load, store, pc, start, rollback

Checking Contract Compliance vai

1. We symbolically execute program to obtain pairs of
(Path condition, Observation Trace)

2. We query Z3 whether, for all public lo and all secret hi, hi’ that
satisfy the path condition, we have
• Obs (lo,hi) = Obs(lo,hi’) implies ObsSpec(lo,hi) = ObsSpec(lo,hi’)

Obs = ObsSpec=τ

Obs=() ObsSpec=τ

lo: size, y, A, B
hi: A[y]

