Testing Software and Hardware
against Speculation Contracts

Boris Kopf
Microsoft Research

NUS CS Research Week
07/01/22

Based on Joint Work With

* Marco Guarnieri (IMDEA Software Institute)

* Jose Morales (IMDEA Software Institute)

* Oleksii Oleksenko (Microsoft Research)

* Jan Reineke (Saarland University)

* Andres Sanchez (EPFL)

* Mark Silberstein (Technion)

* Pepe Vila (Arm)

... and lots of discussions with & feedback from colleagues at Microsoft

Performance is Fundamental

CPUs

Compilers ume
Virtual machines minimize space consumption
Networks energy

Performance-enhancing techniques...

* Caching
* Concurrency
* Deduplication

* Compression

... and their Impact on Security

* Caching Cache-timing attacks on AES

 Concurrency Loophole: Timing Attacks on Shared Event Loops in Chrome

e Dedu pI ication Memory Deduplication as an Advanced Exploitation Vector

Spot me if you can:
o CO m p ress | on Uncovering spoken phrases in encrypted VoIP conversations

Reduce resource
consumption on
average

Exploit variations in
resource
consumption

Example: Cache Side-Channel

Main Memory Cache CPU
Ald]

AlJ]

2005: First attacks on AES (Bernstein/Shamir et al.)
2014-...: Highly effective attacks using shared caches (Yarom et al/...)

Al7] x0 L *ER++A[Brbpvor ~ ...
X1 T *RE+ATHIPLYLD ~ ...

... and their Impact on Security

* Caching Cache-timing attacks on AES

* Concurrency Loophole: Timing Attacks on Shared Event Loops in Chrome

e Dedu p| ication Memory Deduplication as an Advanced Exploitation Vector

[e recoome seere exaoms use THE PHANTDM TROLLEY ISNT
ol ¢ GPECULATIVE EXECUTION?” LTS THAT? SUPPDSED T0 TOUCH ANYONE.
Meltdown ai S A | oukuou e TRowey prosewe e, || BUT T TURNS UT ¥OU CAN
bugs affectv Spoiler’ flaw i | g A UHLE Nou; CPUs HAVE BasicaLly || ST VOE IT T0 DO GTUFF.

BEEN SENDING TROULEYS DOUN BOIH AND IT CAN DRIVE
PATHS, QUANTUM-STVLE, WHILE AWAITING THROUGH WALLS.

YOUR CHOICE. THEN THE UNNEEDED
“PHANTOM" Tmﬁ DISAPPEARS. @?
.,

LOHATS THAT?
IF You ToGGLE. A ROL) OF MEMORY THE CLOUD 1S FULL.OF
HONESTLY TVE BEEN | | (v & oy pp OFF REALLY FAST YoU
ASSUMING WE UERE PHANTOM TROULEVS
CAN UBE ELECTRICAL NTERFERENCE. | permeD LI HAFPERS
DOOMED EVER SINCE R -
T FLIP NEARBY' BITS PND Ve T

| PO VETIT Sk) EXACTLY RIGHT,

w ESPECIALLY SHARED ONES. | oo - rorcs J

Intel Face Spectre - yet d
Darren Allan 2 hours ago P

* Compression AT =7 %

affected by major secur
- and fix could slow dev

Spectre and Meltdow

New speculative exec

0000

* Speculative execution

G

Example: Speculative Leak

Branch Predictor

Wrong prediction? Roll back changes!
* Logical state
. Microarchitectural state (%)

Spectre V1

A size=16... but what

isstoredinA[128]7
T {{}
[»

1) Training

Spectre V1

A size=16... but what

isstoredinA[128]7
——,, Cf}
[»

1) Training g £(0);£(1);£(2); ..

2) Prepare cache

3) Run with x = 128

4) Extract from cache

Covert Channels vs Side-channels

* Covert channels: Adversary = Sender & Receiver

e Side-channels: Adversary = Eavesdropper

Abstract

A note on the 20 Years of Covert Covert channels emerged in mystery and depared in
Confinement Channel Modelling
Problem and Analysis Spectre attacks
1973 1999 2018
Timing Attacks Cache-timing
on RSA etc. attacks on AES Flush+Reload

1996 2005 2014

Countermeasures

® Software-based countermeasures

Insertion of speculation barriers, speculative load hardening, ...
Rely on (often implicit) assumptions about underlying hardware

® Hardware-based countermeasures

InvisiSpec (Micro 18), NDA (Micro 19), STT (Micro 19), SPT (Micro 21),...
Rely on (often implicit) assumptions about software

Delay loads until they retire

... until they cannot be rolled back

i < A sizel){ /

X = A[1];
oo E—
A[il; if (1 < A—Sihé_?L
- B[x*512]} y = B[x*512];

j)
Taint speculatively loaded data;
delay loads to tainted addresses

This Talk: Co-design for Secure Speculation

1. Checking software for
contract compliance

throw new NoSuchElementException();

2. Hardware-software
contracts for secure
speculation

3. Checking CPUs for contract
compliance

Speculation
Contracts

Speculation Contracts in a Nutshell

* Baseline contract: “constant-time programming”:
e Obligation on software: Make sure secrets don’t affect

e (Often implicit) obligation on hardware: Nothing except addresses of
leaks

* Technically: Make sure that all executions of a program that agree on
also agree on what a muarch attacker can observe

* Note that both obligations are instance of non-interference (NI):
P satisfies NI < for all h,h’I: P(h,[)=P(h’I)

* Core idea: We generalize from executions and to capture
the security properties of a wide range of speculation mechanisms

Examples of Contracts

Leakage of CPU without
speculation

* CT-Seq:
* Observations: addresses of loads, stores, branch targets

* Executions: sequential in-order Leakage of CPU with

° CT-SpEC: branch speculation

* Observations: addresses of loads, stores, branch targets
* Executions: sequential in-order + “mispredicted” branches up to a bound

* Arch-Seq
* Observations: addresses of loads, stores, branch targets + data that is loaded
* Executions: sequential in-order

Only transiently loaded

* CT-Bpas, CT-Spec-Bpas,... data is protected

What is a contract?

* A contract is a labelled ISA semantics, where correspond to the
information that programs are allowed to leak during execution

* |SA:

Syntax
(Expressions) e = nlx|cGele®er|ite(er,ez,e3)
(Instructions) i .= skip | x < ¢ |load x,e | store x,e
| jmp e | beqz x,/ | spbarr
(Programs) p = i|pip2
* Core rules for CT-SEQ
LOAD BEQZ-SAT
p(a(pc)) = load z,e T # pc n = [e](a) pla(pc)) = beqz z,/ a(x) =0
(m,a) =22 (m,alpe — a(pe) + 1,z — m(n))) (m,a) XY (m, alpe s)

Ipli'(o) = trace of observations

Core Rules for CT-Spec

STEP = seq RDLLBACK BARRIER - seq
p(o(pe)) # beqz x,/ c—., 0 s=(o, @) 5 p(o(pc)) = spbarr c—., O
.\PL'L' I hl"L"L.' F]'H_‘L‘
(c,0+1)-s—, (0, @) s (6,0)-57°° (pe) s (G, 0+1)-5—_ (6",0)-s

BRANCH

14 if —0
p(c}'(pc)) - I]E(]Z I,f ‘Ec(n’rec‘r - { : G(JE)

o(pc)+ 1 otherwise

wo 1f @ =

Comi c{l.o(pe)+ 1\ Leprrect Omi —
mispred { . (p) }\ correct mispred {ﬂ} otherwise

e micored “PEC
{U, o + l> o\ B o * el (G[PC = fmi.fprfd]a mm:'xpred) ' <U[pc — fc‘orrecr]a Eﬂ) 8

Contracts form a Lattice

N O B

seq
[[ﬂ]mh Set]—spec
A [[ﬂ(,l pC

H ﬂspe(,
1, — [—

L, — Jh means | - |, leaks more information than Jh

Checking Programs
for Contract
Compliance

thr new NoSuchElementExceptior

Checking Programs for Contract Compliance

e Contracts pose a verification condition on software:
 Make sure secrets don’t affect contract traces
* What is “secret” is defined by a policy

Definition 3 (p - NI(m,| -|)). Program p is non-interferent
w.r.t. contract |- | and policy 7 if for all initial architectural
states 0,0": 6 ~5 6’ = |[p|(o) = |pl(c’).

e “Constant-time programming”: secret is part of architectural
state

* “Sandboxing”: secret is memory that is not accessed during
in-order execution

P (0) = L) = [pl(0) = [pl(0)

Tools for Checking Software

* Spectector

e Specfuzz

* Binsec/Haunted
* Pitchfork

* KleeSpectre

* SpecuSym

[2105.05801] SoK: Practical Foundations for Software Spectre Defenses
(arxiv.org)

https://arxiv.org/abs/2105.05801

Spectector

1. Spectector symbolically executes a program wrt to a contract
semantics to obtain pairs of (Path condition, Observation trace)

2. We query Z3 whether, for all o, o’ that satisfy the path condition,
we have

Pl () = [P, (07) = [P (0) = [P (0")

llustration: Kocher’s Examples

* Ex2:
* Ex3:
* Ex4:
* Ex5:
* Ex6:
* Ex7:
* Ex8:
* Ex9:

* Ex10:
* Ex11:
* Ex12:
* Ex13:
* Ex 14:
* Ex15:

Spectre Mitigati

: Vanilla Spectre 1

Move leak to local function

Local function that can’t be inlined

Left-shift y

Use y as initial value of for loop

Check bounds with mask rather than <
Compare against last known-good value

Use ?: operator

Use separate value to communicate safety check
Leak comparison result

Use memcmp() to read memory for the leak
Make index sum of two parameters

Move safety check in inline function

Invert lower bits of x

Pass pointer to the length

ons in Microsoft's C/C++ Compiler

L

o

https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html

CLANG

[CccC

VISUAL C++

SLH

FEN

UNP

FEN

UNP

FEN

UNP

EX.

-02 -00 -02 -00 -02 -00 -02 -00 -02 -00 -02 -00 -02

-00

01
02
03
04
06
07
08

p—] p— o p— p—

Example 1

Clang V7.0.0
-02

t if (y < size) Speculative Load Hardening
2 temp &= BI[A[y] * 512];

1 mowv
2 mowv
3 mowv
¢ Ccmp Srbx, %rax
s dbe END
6 cmovbe 5-1, %rdx
: mowv A(5rbx), %Srax
8 shl 59, %rax
or Frdx, %Srax
%rax is -1 whenever y>size. mov B(%rax), %rax
We can prove security or Frdx, Srax

and trax, Ttemp

Example 10

]

if (y < size)
it (Alyl == k)
temp &= B[O0];

We detect that A[OxFF..FF]

can leak via control flow

Clang V7.0.0
-02
Speculative Load Hardening

mowv
mowv
mowv
cmp
Jbe
cmovbe
or

mowv
cmp
ne
cmovne
mowv
and

Jjmp

size, %Srdx
Y, Frbx
$0, %rax
$rbx, %rdx

END

$—-1, %rax
$rax, %rbx

k, %rcx

srcx, A(%rbx)
END

$—-1, %rax

B, %rcx

srcx, temp
END

Example 8

temp &= B[A[y<size?(y+1l):0]x512];

ICC inserts spurious fence

Intel ICC V19.0.0.117
-02
w/ speculation barriers

mov Yy, Srdi

lea 1(%rdi), %rdx
mowv size, %rax
XOr $rcx, %rcx
cmp frax, %rdi
cmovb %rdx, %rcx
mowv temp, 3%r8b
mowv A(%rcx), %rsi
shl $9, Zr=i
lfence

and B(%rsi), %r8b

mowv sr8b, temp

Checking CPUs
for Contract
Compliance

Checking CPUs for Contract Compliance

* ACPU if programs do not leak more information to
a than what the contract specifies
* For all programs, whenever two executions agree on , they

must also dagree on

* What is a “CPU”, what are “hardware traces”?

1. “CPU” is an operational semantics with uarch components; hardware traces
are obtained as a projection

e Captures simple out-of-order CPU with 3-stage pipeline
* Operates on registers, main memory, and
» Stubs for caches, branch predictors, scheduler

2. “CPU” is a fabricated chip; hardware traces are given by side-channel attack
(e.g. Prime+Probe on L1D)

Contracts for Mechanisms for Secure
Speculation

T —m] \H[[_]]qu | - Hbeq

f R

;f/ﬂ ' H:(C:]h RN ~ %Jq ;Pﬁec)

- > - |

ﬁL:: :;_% hhﬂh_‘t;;lgﬁﬂctpc ﬂ BIOdd[kﬂd)
~ 4[* - = -
@pec \
%pec//)tﬂ]] {| ’}tt
[[ﬂarch

- STT protects data that is
only transiently loaded

- STT still permits
speculative leaks

X = A[1];

s _ if (1 < A size)){
it (1 < A size){

x = A[1];

y = B[x*512]; y = B[x*512];

Testing Black-box CPUs against Speculation
Contracts

* Key observation: checking contract compliance can be done in a
black-box fashion

* For all programs, whenever two executions agree on , they
must also agree on

* Challenges:

* How to cope with the intractable search space?
* How to implement “contracts” for a realistic ISA?
* How to obtain deterministic hardware traces?

Revizor (ASPLOS ‘22)

Instruction Set
Specification

Test Case
Generator

Test Case

Input
Generator

Contact

Inputs

Model - * Executor

Conftract Traces Hardware Traces

— | —

‘ Analyser

!

Report

Test case generator: Creates DAG, adds terminators to blocks,
populates with random instructions (from specified subsets) and
operands (from specified subsets)

Input generator: Generates random 32 bit numbers for registers,
flags, and memory (1 or 2 pages)

Model: Unicorn (QEMU-based), instrumented to collect traces +
explore mispredicted branches

Executor: Prime+Probe (on L1D) and Prime+Probe+assists (clear
page table bit), based on nanoBench

* Priming: Run each test case in a loop with different pseudorandom inputs to
ensure muarch state is primed in a diverse but deterministic fashion

Target 1 ‘Target 2| Target 3 Target 4 Target 5 Target 6 Target 7| Target 8
CPU Skylake Skylake | Coffee Lake
V4 patch off on on
Instruction Set AR AR+MEM | AR+MEM+VAR | AR+MEM+VAR | AR+MEM+CBE | AR+MEM+CB+VAR AR+MEM
Executor Mode Prime+Probe Prime+Probe+Assist
Table 2: Description of the experimental setups.
Target 1 | Target 2 | Target 3 Target 4 | Target 5 | Target 6 Target 7 | Target 8
CT-SEQ X v (V4) | v (V4) X v (V1) | v (V1) v (MDS) | v (LVI-Null)
CT-BPAS x* X v (V4-var™) | x* v (V1) | v (V1) v (MDS) | v (LVI-Null)
CT-COND X * v (V4) | v (V4) X * X v (Vl-var®) | v (MDS) | v (LVI-Null)
CT-COND-BPAS | x* x* v (Vd-var™) | x* X * v (Vl1-var®™) | v (MDS) | v (LVI-Null)
* we did not repeat the experiment as a stronger contract was already satisfied.

** the violation represents a novel speculative vulnerability.
Table 3: Testing results. v’ means Revizor detected a violation; X means Revizor detected no violations within 24h of testing. In

parenthesis are Spectre-type vulnerabilities revealed by the detected violations.

e AR: in-register arithmetic, including logic and bitwise;
e MEM: memory operands and loads/stores;

e vAR: variable-latency operations (divisions).

e CB: conditional branches;

Detected Subtleties

e New variants of V1 & V4

1 b = variable_latency(a)
21f (...) # misprediction

3 c = array([b] # executed 1f the latency is short

* Speculative stores can modify the cache on Coffee Lake (but likely not
on Skylake)

Detection Speed

* Time-to-violation

Detection time

Contract-permitted | V4-type Vi-type |MDS-type| LVI-type

leakage (Target 2) |(Target5)| (Target 7) | (Target 8)
None 73257 ((7) (4’517 (.9)| 57357 (\7) | 77407 (1.1)
V4 N/A 3°48” (.7)| 6’377 (.8) {3706 (1.0)
Vi 1400427 (.6) | N/A 7037 (.8) | 37227 (.3)

Ssummary

* We propose HW/SW Contracts as a framework for specifying security
of speculative execution.
e Captures unprotected speculation, InvisiSpec, Speculative Taint Tracking, ...
* Can be used as a basis for secure programming

* We built Spectector, a tool to detect speculative leaks in software

* We built Revizor, a tool to test CPUs against contracts

* Revizor generates random code snippets to find contract violations
e Automatically surfaces V1, V4, LVI, MDS on x86 (Skylake and Coffee Lake)

* Many avenues for future work, including coverage, white-box
analysis, and more expressive contracts

Links

* Hardware-Software Contracts for Secure Speculation - Microsoft
Research (IEEE S&P 21)

* Spectector: Principled Detection of Speculative Information Flows -
Microsoft Research (IEEE S&P ‘20)

e Revizor: Testing Black-box CPUs against Speculation Contracts
(arxiv.org) (ASPLOS ‘22)

* Full Time Opportunities: Researcher (Side-channel Attacks and
Defenses) in Cambridge | Research at Microsoft

https://www.microsoft.com/en-us/research/publication/hardware-software-contracts-for-secure-speculation/
https://www.microsoft.com/en-us/research/publication/spectector-principled-detection-of-speculative-information-flows/
https://arxiv.org/abs/2105.06872
https://careers.microsoft.com/us/en/job/1059003/Researcher-Side-channel-Attacks-and-Defenses-

llustration: Kocher’s Examples

* Ex 1: Vanilla Spectre 1

* Ex 2: Move leak to local function L if

A
0
|_|.
[
i)

* Ex 3: Local function that can’t be inlined
* Ex4: Left-shifty

i —
D [
=
o]

(e

Il

o

* Ex5:Usey asinitial value of for loop

* Ex 6: Check bounds with mask rather than <

* Ex 7: Compare against last known-good value

* Ex 8: Use ?: operator

* Ex 9: Use separate value to communicate safety check
* Ex 10: Leak comparison result

* Ex11: Use memcmp() to read memory for the leak

* Ex 12: Make index sum of two parameters

* Ex 13: Move safety check in inline function

* Ex 14: Invert lower bits of x

* Ex 15: Pass pointer to the length

CLANG

[CccC

VISUAL C++

SLH

FEN

UNP

FEN

UNP

FEN

UNP

EX.

-02 -00 -02 -00 -02 -00 -02 -00 -02 -00 -02 -00 -02

-00

01
02
03
04
06
07
08

p—] p— o p— p—

Example 1

Clang V7.0.0
-02

t if (y < size) Speculative Load Hardening
2 temp &= BI[A[y] * 512];

1 mowv
2 mowv
3 mowv
¢ Ccmp Srbx, %rax
s dbe END
6 cmovbe 5-1, %rdx
: mowv A(5rbx), %Srax
8 shl 59, %rax
or Frdx, %Srax
%rax is -1 whenever y>size. mov B(%rax), %rax
We can prove security or Frdx, Srax

and trax, Ttemp

Example 10

]

if (y < size)
it (Alyl == k)
temp &= B[O0];

We detect that A[OxFF..FF]

can leak via control flow

Clang V7.0.0
-02
Speculative Load Hardening

mowv
mowv
mowv
cmp
Jbe
cmovbe
or

mowv
cmp
ne
cmovne
mowv
and

Jjmp

size, %Srdx
Y, Frbx
$0, %rax
$rbx, %rdx

END

$—-1, %rax
$rax, %rbx

k, %rcx

srcx, A(%rbx)
END

$—-1, %rax

B, %rcx

srcx, temp
END

Example 8

temp &= B[A[y<size?(y+1l):0]x512];

ICC inserts spurious fence

Intel ICC V19.0.0.117
-02
w/ speculation barriers

mov Yy, Srdi

lea 1(%rdi), %rdx
mowv size, %rax
XOr $rcx, %rcx
cmp frax, %rdi
cmovb %rdx, %rcx
mowv temp, 3%r8b
mowv A(%rcx), %rsi
shl $9, Zr=i
lfence

and B(%rsi), %r8b

mowv sr8b, temp

Core ldea 2: Checking Security

1. We symbolically execute speculative semantics to obtain pairs of
(Path condition, Observation trace) load, store, pe, start, rollback

mov size, %rax

mov y, %rbx start - rollback -7 when v < size

mov S0, %rdx .

cmp Srbx, Srax start - 7 - rollback when v > size

Jbe END

cmovbe $-1, %rdx

ISHETI i;!_sji:\ X rax 7 = loadO (}L—I— y) - load O (B — (f—'& [ET] * 512] “ mﬂ»Sk)
or $rdx, %rax .

mov B(%rax), %rax mask = ltE(:‘fr < size, DKD, OxFF. .FF)

or srdx, %rax

and $rax, temp

Checking Contract Compliance vai

1. We symbolically execute program to obtain pairs of
(Path condition, Observation Trace)

2. We query Z3 whether, for all public /o and all secret hi, hi’ that

satisfy the path condition, we have o AT
* Obs (lo,hi) = Obs(lo,hi’) implies Obs>Pe¢(/o,hi) = Obs>Pe<(lo,hi’)

Obs = Obs>rec=t

start - rollback -7 when v < size_

start - 7 - rollback when v > size
Obs=() Obs>rec=1

7 =loadO (A +v)-loadO (B+ (A[y] = 512)| mask)

mask = ite(y < size,0x0,0xFF..FF)

